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Abstract. In order to treat negative absolute temperatures in the heat-engine theory of 
thermodynamics with logical consistency, a mathematical scheme is proposed which 
consists of three basic concepts, cycles, reservoirs and heats, and three axioms (1) the 
existence of at least one irreversible cycle, (2) the existence of a reversible cycle operating 
between any two reservoirs, (3) the scaling of the size of a cycle and the combination of two 
cycles. The axiom (1) is the weakest form of the second law of thermodynamics. A basic 
theorem of the heat-engine theory, a stronger version of Carnot’s theorem, is derived, and 
based on it the meaning of temperature is clarified and various forms of the second law are 
investigated to examine the possibility of negative absolute temperatures. The set of cycles 
is represented as a half-space in a vector space, and the absolute temperatures are related to 
a normal vector of the hyperplane which supports the half-space. 

1. Introduction 

In this paper we give a logically consistent formulation of the heat-engine theory of 
thermodynamics including negative absolute temperatures. 

The idea of negative ab’solute temperatures was proposed by Purcell and Pound 
(1951), Landau and Lifshitz (1951) and Ramsey (1956) in connection with the 
statistical mechanics of nuclear spin systems. Since then many attempts have been 
made to introduce negative absolute temperatures consistently into thermodynamics, 
and various reformulations of the second law of thermodynamics have been proposed 
(Landsberg 1959,1977, Schopf 1962, Powles 1963, Marvan 1966, Tykodi 1975,1976, 
1978, Tremblay 1976, Danielian 1976, White 1976, Dunning-Davies 1976, 1978)T. 
However, in these attempts, the concept of absolute temperatures is treated as being 
given prior to the second law, and the heat-engine theoretical construction of thermo- 
dynamics with negative absolute temperatures has not been completed. The difficulty 
in the heat-engine theoretical treatment of negative absolute temperatures is, as 
explained below, due to the loose definition of absolute temperatures in the con- 
ventional heat-engine theory. 

The conventional heat-engine theory is constructed by the following four steps: (i) 
The Carnot theorem (all reversible engines operating between two fixed temperatures 
have the same efficiency) is derived from the first and the second laws of thermo- 
dynamics. (ii) The absolute temperatures are defined, based on the Carnot theorem, as 
T I /  T 2  = - Q 1 / Q 2  ( Q l  and Q2 are the heats drawn from two reservoirs by a reversible 

t The best real example, namely the laser, has been explored to a great extent from the quantum statistical 
point of view, and we have recently discussed it in its thermodynamic connection (Hasegawa and Nakagomi 
1979). 
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engine). (iii) The Clausius inequality (B,Q,T;' zs 0) is established for a cycle operating 
between many reservoirs based on the steps (i) and (ii). (iv) By introducing states of a 
thermodynamic system, the quantity entropy is defined for each state and the principle 
of the increase of entropy in adiabatic processes is derived from the Clausius inequality. 

As can be seen in step (ii), the sign of absolute temperatures is indefinite. If we take 
the Kelvin-Planck formulation of the second law, we get the result that all absolute 
temperatures (defined in (ii)) must have the same sign. It is usual to adopt the positive 
sign, but there is no absolute reason for this convention. The Clausius inequality is, 
however, due to this adoption of the positive sign (if the opposite sign is adopted, the 
inequality must be reversed). Thus, in order to include negative absolute temperatures 
in the heat-engine theory, it is necessary to impose a further condition to characterise 
the sign of absolute temperatures upon their definition in step (ii) as well as to replace 
the Kelvin-Planck formulation of the second law by a more suitable one. It is desirable 
to demand, as this condition, that the Clausius inequality should be satisfied, because 
then the principle of the increase of entropy is guaranteed for negative absolute 
temperatures as well as positive (Landsberg's analysis (1977) is essentially based on this 
demand). Unfortunately, however, step (iii) comes after step (ii) in the conventional 
framework, hence the Clausius inequality cannot be used in the definition of absolute 
temperatures. This is the crucial point, if one desires a satisfactory heat-engine theory, 
which has not been worked out. 

In this paper we solve the above dilemma by establishing the following statement 
before introducing absolute temperatures: There exists a quantity g,  for each reservoir i 
such that Z,Q,g, 3 0 and the quantities g ,  are unique up to a common positive factor. The 
absolute temperatures of reservoirs T, that are defined so as to satisfy the Clausius 
inequality are then given by T, = -ag;' (a  > 0) ,  and the steps (i), (ii), (iii) are condensed 
in this statement, which is the fundamental theorem in this paper. Our derivation of this 
theorem is based on three axioms: (1) there exists at least one irreversible cycle; (2) for 
any two reservoirs there exists a reversible cycle operating between them; (3) one can 
scale the size of a cycle and combine two cycles. Since all of the formulations of the 
second law in the heat-engine theory imply the axiom (l), it can be regarded as the 
weakest form of the second law. Note that the assumptions corresponding to axioms (2) 
and (3) are tacitly used in the conventional heat-engine theory. Since the problem 
under consideration is logically delicate, a clear mathematical formulation is desirable. 
In 3 2, we give mathematical expressions for the three axioms and the fundamental 
theorem, where the terms cycles, heats and reservoirs are all ingredients of the present 
formulation. 

The fundamental theorem has a simple geometrical interpretation; especially in the 
two-reservoir case, it can be visualised on the plane R2. Let us call a vector (xl, x 2 )  an 
allowed vector if we can choose a cycle whose heats drawn from the reservoirs 1 and 2 
are x1 and x2 respectively. Then the axiom (1) gives an allowed vector a such that -a is 
not allowed, the axiom (2) gives two allowed vectors b and -6, and the axiom (3) states 
that the vectors aa + @(a 2 0, -a < p < fa) are all allowed. Thus the set of all 
allowed vectors occupies a half-plane in R2 (see figure 1). This is the assertion of the 
fundamental theorem illustrated for the two-reservoir case. The vector g = ( g l ,  g2)  = 
-(TT1, T; ' )  is the norxal vector of the line supporting the half-plane. Also, it can be 
shown that various formulations of the second law are reflected in the restriction on the 
direction of the normal vector g. The proof of the fundamental theorem (3  3) is 
suggested by this geometrical interpretation which is adaptable in many-reservoir cases 
(even in the case of uncountably infinite reservoirs). 
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Figure 1. Illustration in the two-reservoir case. The vectors b and -b correspond to a 
reversible cycle and its reversed cycle, and the vector U to an irreversible cycle. Any 
possible cycle is represented by a vector in the hatched region F ;  in particular, the boundary 
K represents the set of reversible cycles. 

In 0 4, the concept of temperature is first introduced as the hotter-colder relation 
between reservoirs, and then the connection between this hotter-colder relation and 
absolute temperatures is fixed based on the fundamental theorem. In § 5 ,  the Clausius 
and the Kelvin-Planck forms of the second law and their modifications are re-examined 
in our framework, and the range of possible absolute temperatures is given for each 
form of the second law. In § 6 ,  the axiom (2) is somewhat weakened so as to fit real 
situations. The discussion of the step (iv) of the heat-engine theory needs further 
preparations, and is not included in the present work. 

Besides the logically consistent treatment of negative absolute temperatures, our 
formulation of the heat-engine theory has the following advantages: (a) Our formula- 
tion includes no tacit assumptions except the three axioms. (b) Any concept concerning 
temperature such as hotter or colder, empirical temperature, or the zeroth law (Home 
1977, Bergthorsson 1977) is not included in the axioms. (c) The first law is not used (the 
necessity of the first law depends upon the way to formulate the second law, e.g., it is 
necessary in the case of the Kelvin-Planck formulation, and not in the case of the 
Clausius formulation). (d) It is derived naturally that *O are not included in the range of 
possible absolute temperatures (this is consistent with the third law), and +CC and -CC of 
absolute temperatures that can be included are the same temperature. 

2. Mathematical formulation 

The object of our mathematical study is the system? that consists of two non-empty sets 
@and Wandamapping Qof %‘intoR?={x=(xe; eE@);xeERVeE@,xe=Oexcept 

t The physical meaning of the system {e, V, Q} is as follows: 0 is a set of heat reservoirs, and a cycle c means a 
device periodically operating between several reservoirs in 0 which will produce no effect except the 
exchanging of heat with the reservoirs and the doing of work. V is the set of all possible cycles, and the three 
axioms provide the conditions for the possible cycles. The choice of the axioms is reasonable as explained 
briefly in 8 1. The quantity Qe(c)  is the amount of heat drawn from the reservoir 8 in a cyclic process by the 
cycle c. The set 0 may be infinite, but we deal with only such cycles as make contact with a finite set of 
reservoirs (i.e. Q ( c )  E I?:) because the axioms are obtained on the basis of the experience for such cycles. In 
particular, the cycles which make contact with only two reservoirs 8 and 8’ are contained in %(e, 8’). It is 
noted that cycles are not necessarily represented as cyclic paths in thermostatic phase spaces of the working 
substances, and that we do not use the concept of (equilibrium) states. 
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for a finite set of e}, where R is the real line and R? is a vector space with the operations 
x + y = (xe  + y e )  and ax  = (axe )  (a  E R ) .  The elements 8 E 0 and c E Ce are called 
reservoirs and cycles respectively and the 8 component Qe(c) of Q(c) = (Qe(c)) is called 
the &heat of the cycle c. The mathematical structure of the system (0, %, Q} is 
provided by the three axioms given below. 

Definition 2.1. A cycle c is called reversible if there exists a cycle c’ such that 
Q(c’)=-Q(c), otherwise irreversible. A cycle c is called a zero cycle if Q(c)  =0 ,  
otherwise a non-zero cycle. 

Definition 2.2. For any two reservoirs 8 and 8’ a set V(8, e’) is defined as 

%(e, e’) ={c E Ce; Q,,,(c) = 0 if 8” # 8 and 8” # e’}. 
Axiom 1. There exists at least one irreversible cycle. 
Axiom 2. For any pair o f  reservoirs 8 and 8’ (8 # e’), there exists at least one non-zero 
reversible cycle in %(e, O’), 
Axiom 3. For any two cycles c and c’ and for any non-negative numbers a and p ,  there 
exists a cycle c”  such that Q(c”) = aQ(c) +PQ(c ’ ) .  

Axioms 1, 2, 3 are the mathematical refinements of the axioms ( l ) ,  (2), (3) 
mentioned in the Introduction. 

Theorem 2.1. I f  axioms 1 , 2 , 3  are all satisfied, then there exists a mapping g of 0 into R 
such that 

and the mapping g is unique up to a positive multiplicative constant. Conversely, if 
there exists a mapping g of 0 into R satisfying the condition (2.1), then axioms 1 , 2  and 
3 hold. 

Theorem 2.1 is the fundamental theorem announced in the Introduction. The proof 
of this theorem is given in the next section. 

3. Proof of Theorem 2.1 and geometrical representation 

The proof o f  theorem 2.1 is given by translating axioms 1 , 2 , 3  into the statements in the 
vector space Rf. Let us define the following notations: F ={Q(c); c E Ce}, D ( x )  = 
{ e  E 0; xe # 0 )  ( x  ER:), and n ( x )  = the number of elements in D ( x ) .  Then axioms 1 , 2 , 3  
are represented in R: as follows, respectively: 
P1. F\K # q5, where K = F n (-F) and -F = { -x;  x E F}. 
P2. For any 8, 8’ E 0 (0 # e‘), there exists x E K such that q5 # D ( x )  c (6, e’}. 
P3. I f x , x ’ E F , a s O ,  and p>O, thenax+px’EF .  
From the above three properties, we get a series o f  lemmas. 

Lemma 1. K is a subspace in Rf. 
Proof. It is obvious from the property P3 and the definition o f  K. U 

Lemma 2. There exists f E F\K such that n ( 2 )  = 1. 
Proof. From the property P1, we see that 0 & F\K # q5 ; then the minimum number r of 
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n ( x )  for x E F\K is a positive integer. Let us assume r 2 2, then there exist z E F\K and 
8, B'E @(e # e ' )  such that n ( t )  = r and D ( z )  2 { 0 ,  e'}. By the property P2, there exists 
w E K such that 4 # D ( w )  c {e, e'}, then we can choose a suitable number a E R such 
that to + a w e  = 0 or tR,+ awR, = 0. This means that n(z  + a w )  < r. Moreover it is 
obvious that z f a w  E F\K, because z + crw E K implies z E K. The result is contradic- 

0 tory to the definition of r. Therefore, we have r = 1. 

Lemma 3. Let 2 be an element in F\K such that n ( f )  = 1 (the existence of such an 
element is guaranteed by lemma 2). Then any x E E: can be expressed as follows: 

with a 2 0  and w E K. x =ax^+ w (3.1) 
Proof. Put D ( i )  = {eo> and take any x E: I;. If D ( x )  c {eo}, then x is obviously written in 
the form (3.1). In the other case (i.e., D(x)\{Bo} Z q5), the proof is as follows: From P2, 
for each 0 E D(x)\(eo} there exists y e  E K such that 4 # D( y e )  c {e, eo}. If e& D(  y ' )  
then x* = ( x e o / y ~ , ) y 8  E K, which is contradictory to f E F\K. Therefore, 6, ED(  y'). 
Then we can define z E F by 

Z = P e y  ' + X with P e  = - X e / y  io 
BED(x)  

It is obvious that z8 = 0 for e # eo, hence z = af  (a  = z@O/f@O). Therefore, x = ax* + w 
where w = -&pRy E K. If a < 0, then -2 = -a-'z E F, i.e., f E K, which is contradic- 

0 tory to .i? E F\K. Therefore, we get a a 0. 

Lemma 4. For any 6' E 0, there exists x E F such that D(x)  = {e}. 
Proof. Assume x* and eo as in the proof of lemma 3, i.e., x* E F\K, D(2)  ={eo}. If 8 # eo 
then by the property P2 there exists z E K such that 4 # D ( z ) c  {e, eo}. If Bo&D(z), 
then D ( z ) = { 8 }  and Z E F .  If e,ED(z),  then P ( x ) = { B }  and X E F  where x = a z + i  
(a  = - f R o / z 8 0 ) .  0 

Lemma 5. K is a hyperplane? in R: containing the zero vector. 
Proof, From lemma 3 and the property P3 

F = [$I++ K (3.2) 

F U (-F) = [a]  + K (3.3) 
where [ f ]  ={ax*; a E R } .  On the other hand, by lemma 4, for any 8 E 0 there exists 
x' E F such that D(x') ={e}.  Hence, the algebraic basis {e'; 0 E 0)  of the vector space 
R: (defined by D ( e ' ) = { e )  and e , " = l )  is contained in F u ( - F ) ,  because e'= 
( l /x : )xe  E F or E ( -F) .  Then from lemma 1 and equation (3.3) we see that [4]+K is a 

0 

where [x^]'={ax*; a S O }  and A +B = { x  + y ;  x E A ,  y E B }  for A, B c R:. Then 

subspace containing the basis {e'; 0 E e}, therefore [x*]+ K = R:. 
Here we use the following well known general lemma. 

Lemma 6. If H is a hyperplane in a vector space L containing the zero vector, then 
there exists a linear functional f on L such that 

H ={x E L ;  f ( x )  = O}, 

t In general, a subspace H in a vector space L is called a hyperplane containing the zero vector if there exists a 
one-dimensional subspace V such that V + H = L. 
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and f is unique up to a non-zero multiplicative constant. For the proof of lemma 6, see 
Valentine (1964). 

Proof of Theorem 2.1. By lemmas 5 and 6, there exists a linear functional f on Rg such 
that 

K = {x E R: ; f ( x )  = 0)  (3.4) 

and the functional f is unique up to a non-zero multiplicative constant. Then from 
lemma 3 or the relation (3.2) we have 

F = {X E R: ; f ( x )  a 0) (or ={x E R: ; f ( x )  s 0)). 

Therefore, byputtingg(8) = f ( e e ) V 8  E 0 (or g ( 8 )  = - f (ee)V8 E 0) ( e s  are definedin the 
proof of lemma 5 ,  i.e., D(ee)  ={e} and e:  = l), we get the relation (2.1). 

If a mapping g : O + R  satisfies (2.1), then the linear functional defined by f ( x )  = 
Xeg(8)xe satisfies (3.4). Therefore, the mapping g is unique up to a scaling factor, 
moreover, the scaling factor must be positive in order to conserve the inequality in (2.1). 

U The latter half of theorem 2.1 is easily checked. 

4. Temperatures 

The concept of temperature is primarily defined by a hotter-colder relation. 

Definition 4.1. We define a relation 6 in 0 (called temperature order) as 

8’ # 8 and 3 x  E % such that -Qe,(c) = Q,(c) > 0 

and related notations i= and < are defined as 

8 ‘ = 8  e e ‘ a e a n d 8 ~ 8 ’ ,  

e < 8’ e the relation 8 ‘ 6  8 is not true. 

The physical meaning of the relation 8 ’6  8 is that the reservoir 8’ is not hotter than the 
reservoir 8, and consequently, 8 < 8‘ means that 8’ is hotter than 8, and 8’ = 8 means 
that the two reservoirs 8’ and 8 are in thermal equilibrium with each other. 

From theorem 2.1 we can observe the fact that 

e ’ s  e w g(e’) s g ( e ) .  (4.1) 

From this fact we see that the mapping g serves as the measure of the temperature 
order, and that the relation d is a total quasi-order in 0 i.e., (i) 8 d 8, (ii) 8 d 8’ and 
8 ‘ s  8’’ .$ e 6 e”, (iii) for any 8, 8 ’ E  0, 8 s 8’ or 8‘s 8 holds. The property (ii) is the 
transitivity, which is the essential feature of temperature (Home 1977, Bergthorsson 
1977). 

Definition 4.2. The absolute temperature T ( 8 )  specified to each reservoir 8 is defined 
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byamapping T : O + { x ; - o o s x < O o r O < x s + ~ } s u c h t h a t  

T(8)-’Qe(c) s 0 VCEV 
e 

with equality iff c is reversible, where ( f 00)-l= 0. 
From theorem 2.1 we get the relation 
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(4.2) 

where a is a positive constant. From this relation we have the following facts: 
(a) T ( e ) =  T(8’) j 8 4 ’  

(b) T ( 8 )  = +CO and T(8’) = -00 j 8 =e ’  
(c) T(8)  > 0, T(8’) = f 0 0  or -00, and T(8”) < 0 j 8 < e’< 8” 

(d) o < T ( e )  < r(e’) j e < e’ 
(e) T ( 8 )  < T(8’) < 0 3 8 < 8’. 

It is noted that in our scheme the coldest or the hottest reservoirs of all possible 
reservoirs do not exist, in other words, the reservoirs with absolute temperatures 
T = * O  do not exist. This is consistent with the third law of thermodynamics (e.g. ter 
Haar and Wergeland 1966). If we use the mapping g as a temperature scale, these 
extreme temperatures correspond to g = fa, which are naturally excluded; moreover, 
the temperature order < is represented faithfully by g (c.f. (4.1)) and not by T. It is then 
theoretically preferable to use g rather than T as a temperature-scale. 

5. Various forms of the second law 

We will set forth various forms of the second law and inquire their relation with our 
axioms and the resultant restrictions on the range of possible absolute temperatures. 

Definition 5.1. A mapping W :  V + R (called work) is defined by W(c)  = 
cycle c is called a non-work cycle if W ( c )  = 0. 

Q,(c). A 

Original Clausius form (OC). There exists a total quasi-order d in 0 such that if 8% 8’ 
then Qs(C)>O for any non-zero and non-work cycle c E %‘(e, e‘), and there exists at 
least one pair 8, 8’E 0 such that 8% 8’. 

Weak Clausius form (WC). For some two reservoirs 8 and 8’E 0, the &heat Qe(c) is 
positive for any non-zero and non-work cycle c E %‘(e, 8’). 

Original Kelvin-Planck form (OKP). For any 8 E 0, all non-zero cycles c E %‘(e) have 
negative work, W(c)<O,  where “(8) = %‘(e, 8). 

Weak Kelvin-Planck form 1 (WKP-1). For any 6 E 0, all non-zero cycles c E %‘(e) are 
irreversible. 

Weak Kelvin-Planck form 2 (WKP-2). For some 8 E 0, all non-zero cycles c E %(e) are 
irreversible. 
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Anti-Kelvin-Planck form (AMP). For any O E O ,  all non-zero cycles C E  % ( e )  have 
positive work, W ( c )  > 0. 

Since any one of the above statements OC, . . . , AMP implies axiom 1, the 
combination of axioms 2 and 3 with any one of OC, . . . , AKP implies the existence of 
the mapping g satisfying the condition (2.1), but the converse proposition (like the latter 
half of theorem 2.1) is not necessarily true. Further but easy investigations reveal the 
following facts. + 

if)  (WKP-2, A2, A3) e (Al ,  A2, A3) e 3gG(g) 

where G(g) represents the statement that the mapping g satisfies the condition (2.1), 
and Pal, A2, A3 are abbreviations of axioms 1, 2, 3 respectively. 

(g) (OC, A%, R3) e (WC, A2, A3) @ -Jg(G(g), 30, @E 0 g ( 0 )  f g ( 0 ’ ) )  

U4 (OKP, A2, A3) @ 3 g ( G ( g ) ,  g CO) 

(i) (WKP-1, A2, A3) e 3g(G(g) ,  g f 0 )  

(j) (AKP, A2. A31 e % ( G ( g ) ,  g>O). 

Thus, by referring to the relation (4.3), we can see that the absolute temperature T i s  
restricted to positive values for OKP, to finite values for WKP-1, and to negative value 
for AKP. The Clausius forms OC and WC do not restrict the range of T but require the 
existence of two reservoirs which are not in  thermal equilibrium with each other. Only 
WKP-2 is equivalent to axiom 1 under axioms 2 and 3. 

6. Modification of axiom 2 

The reversible cycle is an ideal concept, so that it is desirable to weaken axiom 2. 
Axiom 2’. For any pair 8,8’  E 0 ( e  # e’) and any E > 0, there exist non-zero cycles c and 
C ’ E  %(e,  e‘) such that 

/ Q ~ ( c ) +  Qo(c’)l+ ~QoJ(c!+ Qe,(c’)I< €{ /QB(c )  + QB,(CII}, 
Axiom 2’ asserts the existence of asymptotically reversible cycles. Theorem 2.1 is 

modified as follows: 

Theorem 6.1. If axioms 1,2’, 3 are all satisfied, then there exists a mapping g of 0 into R 
such that 

where %‘, is the set of all irreversible cycles. The mapping g is unique up to a positive 
multiplicative constant. Conversely, if there exists a mapping g satisfying (6.1) then 
axioms 1, 2‘ and 3 hold. 
Proof. Define Fo = {Q(c);  c E %} and 

F = F ~ U { X  ER?; 3~ E F ~ ,  V €  > O  x E F~ x - € y  E (-F,,)}. 

It is easily checked that the set F has the properties P1, P2, P3 stated in the beginning of 
0 § 3; hence, one can prove the theorem by using the discussion in 9 3. 

t Here, the notation ( X ,  Y, . . .) for the statements X ,  Y, . . . means ‘ X  and Y and.  . .’. 
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( f ) ,  . . . , ( j )  in § 5 hold by the conversions of axiom 2 with axiom 2’ and of G(g) with 
G’(g),  where G’(g) means the statement that the mapping g satisfies the condition (6.1). 

7. Concluding remarks 

The validity of the axioms adopted here as a basis of thermodynamics depends upon 
experiments and the interpretation of %, 0 and Q,(c). However, the mathematical part 
of the discussion in this paper is independent of the interpretations of %, 0 and Q~(c),  
and so it can be applied to any system which satisfies axioms 1 ,2 ,3  or their modifications 
in $ 8  5 and 6 with another interpretation of %’, 0 and Q,(c).  For example, we may take 
diffusion processes of matter instead of heat transfer (this example will be treated in a 
subsequent paper). We may also find examples in biology or economics. 
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